Variasisoal tentang limit trigonometri begitu banyak. Keterampilan menentukan nilai limit trigonometri bisa mudah dengan cara banyak mengerjakan latihan soal tentang limit fungsi trigonometri. Walaupun soal yang diberikan bervariasi, akan tetapi jika sudah menangkap konsepnya maka untuk jenis soal apapun bisa dengan mudah untuk diselesaikan. Setelahitu baru aku akan kasih contoh soal turunan fungsi trigonometri sekaligus dengan pembahasannya. Diketahui y = \sin^ {3} (2x^ {5} - 7x), tentukanlah turunan pertamanya! Jawab: Turunan pertama itu y' atau \frac {dy} {dx} Misalkan u = 2x^ {5} - 7x maka \frac {du} {dx} = 10x^ {4} -7 Misalkan v = \sin u maka \frac {dv} {du} = \cos u Untukmenjawab soal-soal turunan fungsi trigonometri yang sederhana kita masih bisa menggunakan rumus dasar. Akan tetapi, untuk soal yang lebih rumit kita harus menggunakan aturan rantai. Aturan rantai pada turunan fungsi trigonometri prinsipnya sama dengan aturan rantai pada turunan fungsi aljabar. Agar kita dapat menggunakan aturan rantai tentu cash. Turunan fungsi aljabar telah kalian kuasai, bagaimana dengan turunan fungsi trigonometri? mari kita pahami rumusnya serta berlatih di soal dan pembahasan turunan fungsi trigonometri bersama-sama, dijamin sukses dalam ujian kalian…. Untuk menentukan turunan trigonometri sama dengan konsep awal mencari turunan, namun disini langsung kita ambil hasilnya…. dimana $f’ x = \underset{h\rightarrow 0}{lim}\\frac{fx + h - fx}{h}$ maka Turunan pada fungsi trigonometri akan mempunyai rumus $fx = sin\x $ maka $f’x= cos\x$ $fx = cos\x $ maka $ f’x= - sin\x$ $fx = maka $f’x= $fx = maka $f’x= contoh $\fx= 3cos\x$ maka $f’x=-3sin\x$ $\fx=2sin\5x$ maka $f’x=10cos\5x$ $\fx= \begin{array}{rcl}f’x & = & {-4}. & = & {-12}.sin3x+\pi\end{array} Rumus rumus yang dipakai di turunan fungsi aljabar, berlaku pula untuk mengerjakan turunan fungsi trigonometri maupun gabungan keduanya lets try this…. $\fx=sec\x$ tentukan $f x$ ! Jawab \begin{array}{rcl}fx & = & sec\x\\ & = & \frac{1}{cos\x}\end{array} \begin{array}{lcl}u=1 & maka & u’=0\\ v=cos\x & maka & v’=-sin\x\end{array} \begin{align*}f’x & = & \frac{u’.v-v’.u}{v^2}\\ & = & \frac{ & = & \frac{sin\x}{cos^2\x}\\ & = & \frac{sin\x}{cos\x}.\frac{1}{cos\x}\\ & = & tan\ $\fx=x^2+2.sin\x$ tentukan $f x$ ! Jawab \begin{array}{lcl}u=x^2+2& maka & u’=2x\\v=sin\x & maka & v’=cos\x\end{array} \begin{array}{rcl}f’x & = & u’.v+v’.u\\ & = & & = & 2x\sin\x+x^ Turunan ke-n Diberikan fungsi $fx$, maka turunan pertama dari $fx$ adalah $f’ x$ ; turunan kedua dari $fx$ adalah $f’’ x$ ; turunan ketiga dari $fx$ adalah $f’’’ x$ dst. $\fx=4x^ tentukan turunan kedua dari $fx$! Jawab kita cari turunan pertama dulu ya.. \begin{array}{lcl}u=4x^2 & maka & u’=8x\\ v=cos\x & maka & v’=-sin\x\end{array} \begin{array}{rcl}f’x & = & u’.v+v’.u\\ & = & & = & perhatikan untuk $f’x= mempunyai dua suku kita misalkan bahwa suku-suku $f x$ adalah a dan b dimana $f x = a – b$ untuk mencari turunan kedua akan berlaku $f ”x = a’ – b’$ mari kita cari turunan masing-masing suku… ambil suku pertama dari $f x$ kita misalkan $a= \begin{array}{lcl}u=8x & maka & u’=8\\ v=cos\x & maka & v’=-sin\x\end{array} \begin{array}{rcl}a’ & = & u’.v+v’.u\\ & = & & = & ambil suku kedua dari $f x$ kita misalkan $b=4x^ \begin{array}{lcl}u=4x^2 & maka & u’=8x\\ v=sin\x & maka & v’=cos\x\end{array} \begin{array}{rcl}b’ & = & u’.v+v’.u\\ & = & & = & nah, kembali ke $f’x=a’-b’$ \begin{array}{rcl}f x & = & a’-b’\\ & = & & = & & = & selesai,deh…..coba yang lain yuk! $\fx= tentukan turunan ke-empat dari $fx$ ! Jawab $fx= mempunyai dua suku kita misalkan a dan b sehingga $f x = a + b $ cari turunan masing-masing suku dulu ya… $a= \begin{array}{lcl}u=x & maka & u’=1\\ v=cos\x & maka & v’=-sin\x\end{array} \begin{array}{rcl}a’ & = & u’.v+v’.u\\ & = & & = & cos\ $b=sin\x$ maka $b’=cos\x$ \begin{array}{rcl}f’x & = & a’+b’\\ & = & cos\ & = & $f’x= mempunyai dua suku kita misalkan lagi c dan d sehingga $f ”x = c – d $ $c= maka $c’= $d= \begin{array}{lcl}u=x & maka & u’=1\\ v=sin\x & maka & v’=cos\x\end{array} \begin{array}{rcl}d’ & = & u’.v+v’.u\\ & = & & = & sin\x+ \begin{array}{rcl}f’x& = & c’-d’\\ & = & & = & {-2}.sin\x-sin\ & = & {-3}.sin\ $f’x= mempunyai dua suku, suku pertama langsung dapat kita turunkan dan turunan suku kedua dapat dilihat telah kita cari di atas $a= maka $a’=cos\ sehingga \begin{array}{rcl}f’’x & = & {-3}.cos\x-cos\ & = & {-3}.cos\x-cos\x+ & = & {-4}.cos\x+ $f’’x={-4}.cos\x+ mempunyai dua suku, suku pertama langsung dapat kita turunkan dan turunan suku kedua dapat dilihat telah kita cari di atas $d= maka $d’=sin\x+ sehingga \begin{array}{rcl}f’’’x & = & {-4}.-sin\x+sin\x+ & = & {4}.sin\x+sin\x+ & = & {5}.sin\x+ waaaaah…..selesai !!!! begitu seterusnya hingga turunan ke-n …..coba sendiri dengan soal yang lain yah…!! ada yang bertanya soal seperti ini Jika diketahui $y=sin\x$ buktikan bahwa turunan ke-n yaitu $y^n=sinx+\frac{\pi}{2}.n$ ! Jawab ingatlah kembali nilai sin x di tiap kuadran $y=sin\x$ $y’=cos\x$ $=\sin\frac{\pi}{2}+x$ $=\sinx+\frac{\pi}{2}.1$ $y’’=-sin\x$ $=\sin{\pi}+x$ $=\sinx+\frac{\pi}{2}.2$ $y’’’=-cos\x$ $=\sin\frac{3.\pi}{2}+x$ $=\sinx+\frac{\pi}{2}.3$ $y’’’=sin\x $ $=\sin{2.\pi}+x$ $=\sinx+\frac{\pi}{2}.4$ … … … … … … dst dst dst sehingga $\large y^n=\sinx+\frac{\pi}{2}.n$ terbukti Untuk contoh latihan soal dan pembahasannya di Soal 3 Turunan Trigonometri yah…. lum3n-44775/ - contoh soal turunan fungsi trigonometriContoh soal turunan fungsi trigonometri adalah salah satu materi pembahasan yang bisa dijumpai pada pelajaran Matematika di kelas 11 SMA. Pastinya akan ditemui lagi di kelas 12 dengan variasi soal dan jawaban yang mungkin lebih Soal Turunan Fungsi TrigonometriSebelumnya, sudahkah kalian tahu apa yang dimaksud dengan fungsi trigonometri? Mengutip dari buku Pasti Bisa Matematika untuk SMA/MA Kelas X, Tim Ganesha Operation, 2017, fungsi trigonometri adalah fungsi transenden atau fungsi nonaljabar. Fungsi ini tidak bisa dinyatakan dalam beberapa operasi aljabar. Contohnya fx = sin x, fx = cos adalah ilmu pengukuran segitiga yang mempelajari tentang sudut dan fungsinya. Konsep ini banyak digunakanuntuk mengetahui hubungan antara sudut dan sisi segitiga, yang dinamakan fungsi louis-bauer-79024/Berikut beberapa contoh soal turunan fungsi trigonometri dan jawaban serta Carilah turunan pertama dariY’ = – U’ sin U = – 3 sin 3x – 2Y’ = U’ cos U = 2 cos 2x + 32. Temukan turunan dari y = x2 sin = sin 3x maka V’ = 3 cos 3xY’ = 2x . Sin 3x + x2 . 3 cos 3x3. Carilah turunan pertama dariY’ = – U’ sin U = – 4 sin 4x4. Temukan turunan dari y = cos2 3x – 2.Misal U = 3x – 2 maka U’ = 3Misal V = cos U maka V’ = – sin UFV = V2 maka f'V = 2VY’ = 2V . – sin U . 3 = 2 cos U . – sin U . 3Y’ = -6 sin 3x – 2 cos 3x – 25. Temukan turunan dari y = sin2 2 – x.Misal U = 2 – x maka U’ = -1Misal V = sin U maka V’ = cos UFV = V2 maka f'V = 2VY’ = 2 sin U . Cos U . -1 = -2 sin 2 – x cos 2 – xPerlu diingat, bahwa dalam matematika, semakin rajin dan sering kamu berlatih mengerjakan soal, kamu juga akan menjadi semakin memahami materi yang diberikan. Semoga contoh soal turunan fungsi trigonometri dan kunci jawabannya tadi bisa kamu jadikan sebagai bahan belajar di rumah. DNR Bahas Soal Matematika » Turunan › Contoh Soal dan Pembahasan Turunan Fungsi Trigonometri Matematika SMA Oleh Tju Ji Long Statistisi Hub. WA 0812-5632-4552 Pada artikel ini kita akan membahas beberapa contoh soal turunan fungsi trigonometri matematika SMA. Pada dasarnya, menyelesaikan soal turunan fungsi trigonometri mirip dengan cara menyelesaikan turunan fungsi aljabar yakni kita dapat menggunakan rumus-rumus turunan seperti turunan perkalian, pembagian, dan turunan fungsi komposisi dengan aturan rantai. Hanya saja, karena di sini fungsi yang akan dicari turunannya adalah fungsi trigonometri maka kita perlu pahami dulu turunan dari fungsi trigonometri dasar berikut ini Perhatikan bahwa kita menggunakan notasi \ f’x \ untuk menyatakan turunan seperti diberikan di atas. Sebenarnya masih ada beberapa cara lain untuk menyatakan turunan, yakni \[ y' \quad \frac{dy}{dx} \quad \text{dan} \quad Dx \] Sebelum masuk ke contoh soal dan pembahasan dari turunan fungsi trigonometri, sebaiknya kita sudah menguasai beberapa rumus turunan berikut ini agar dapat mengerjakan soal turunan trigonometri dengan lancar. Untuk lebih jelasnya, kita langsung masuk ke contoh soal dan pembahasan turunan fungsi trigonometri berikut ini. Contoh 1 Jika \ fx=-\cos^2 x - \sin^2 x \, maka \ f’x \ adalah… Pembahasan » Untuk mengerjakan soal ini kita bisa meminjam sifat dari identitas trigonometri berikut \begin{aligned} \sin 2x &= 2 \sin x \cos x \\[8pt] \cos 2x &= \cos^2 x - \sin^2 x \end{aligned} Dengan demikian, Contoh 2 Jika \ y = 3x^4 + \sin 2x + \cos 3x \, maka \ \displaystyle \frac{dy}{dx} = \cdots \ Pembahasan » Contoh 3 Jika \ y = 2 \sin 3x – 3 \cos 2x \, maka \ \displaystyle \frac{dy}{dx} = \cdots \ Pembahasan » Contoh 4 Jika \ \displaystyle fx = \frac{ \sin x + \cos x }{ \sin x }, \sin x \neq 0 \ dan \ f’x \ adalah turunan \ fx\, maka \ \displaystyle f’ \left \frac{\pi}{2} \right = \cdots \ Pembahasan » Misalkan \ u = \sin x + \cos x \ dan \ v = \sin x \ sehingga \ fx = u/v \. Ingat bahwa rumus turunan untuk pembagian yaitu Kita cari turunan dari \u\ dan \v\ terlebih dahulu, yakni Dengan demikian, Contoh 5 Jika \ \displaystyle fx = a \tan x + bx, \ f’ \left \frac{\pi}{4} \right = 3 \ dan \ \displaystyle f’ \left \frac{\pi}{3} \right = 9 \, maka \ a + b = \cdots \ Pembahasan » Ingat bahwa turunan dari \ \tan x \ adalah \ \sec^2 x \ sehingga Selanjutnya, dengan menyelesaikan SPLDV persamaan 1 dan 2 di atas dengan cara substitusi atau eliminasi, kita peroleh nilai \a = 3\ dan \b = -3\ sehingga \a + b = 0\. Contoh 6 Turunan pertama dari \ y = \cos^4 x \ adalah… Pembahasan » Untuk menyelesaikan soal turunan ini kita bisa gunakan aturan rantai. Misalkan \ u = \cos x \ sehingga kita dapatkan hasil berikut Dengan demikian, turunan pertama dari \ y = \cos^4 x \ dengan cara aturan rantai, yakni Contoh 7 Jika \ fx = \sin \sin^2 x \, maka \ f’x = \cdots \ Pembahasan » Untuk mencari turunan pertama dari fungsi pada soal di atas, kita bisa gunakan aturan rantai. Misalkan \ u = \sin x \ sehingga Misalkan lagi \ v = u^2 \ sehingga Dengan demikian, turunan pertama dari \ fx = \sin \sin^2 x \ berdasarkan aturan rantai, yaitu Contoh 8 Misalkan \ fx = 2 \tan \sqrt{\sec x} \, maka \ f’x = \cdots \ Pembahasan » Kita dapat gunakan aturan rantai untuk menyelesaikan soal ini. Misalkan \ u = \sec x \ sehingga Misalkan lagi \ v = \sqrt{u} \ sehingga Dengan demikian, turunan pertama dari \ fx = \sin \sin^2 x \ berdasarkan aturan rantai, yaitu Contoh 9 Turunan pertama dari fungsi \ \displaystyle fx = \frac{1+\cos x}{\sin x} \ adalah \ f’x = \cdots \ Pembahasan » Misalkan \ u = 1 + \cos x \ dan \ v = \sin x \ sehingga \ fx = u/v \. Ingat bahwa rumus turunan untuk pembagian yaitu Kita cari turunan dari \u\ dan \v\ terlebih dahulu, yakni Dengan demikian, Contoh 10 Jika fungsi \ fx = \sin ax + \cos bx \ memenuhi \ f’0 = b \ dan \ \displaystyle f’ \left \frac{\pi}{2a} \right = -1 \, maka \a + b = \cdots \ Pembahasan » Karena \ b = a \ dan \a = 1\, maka \b\ juga bernilai 1 sehingga \ a + b = 1 + 1 = 2 \. Contoh 11 Jika \ fx = \sin x \cos 3x \, maka \ \displaystyle f’ \left \frac{1}{6} \pi \right = \cdots \ Pembahasan » Misalkan \ u = \sin x \ dan \ v = \cos 3x \ sehingga \ fx = u \cdot v \. Ingat bahwa rumus turunan dari perkalian dua fungsi yaitu Selanjutnya, kita cari turunan dari u dan v terlebih dahulu, yakni Dengan demikian, Contoh 12 Turunan pertama dari fungsi \ y = \sin x + \cos x^2 \ adalah… Pembahasan » Untuk mencari turunan dari fungsi dalam soal ini ada dua cara yang bisa digunakan. Cara yang pertama yaitu dengan menyederhanakan fungsinya terlebih dahulu lalu mencari turunannya. Perhatikan berikut ini Cara kedua yaitu langsung menggunakan sifat dari turunan. Contoh 13 Jika \ fx = \sqrt{1+\sin^2 x} \ di mana \ 0 \leq x \leq \pi \, maka \ f’x \cdot fx \ sama dengan… Pembahasan » Contoh 14 Diketahui \ fx = x \sin 3x \, maka \ f’ \left \frac{\pi}{4} \right \ sama dengan… Pembahasan » Misalkan \ u = x \ dan \ v = \sin 3x \, maka \ fx = u \cdot v \. Ingat bahwa rumus turunan dari perkalian dua fungsi, yaitu Selanjutnya, kita cari turunan dari \u\ dan \v\ terlebih dahulu, yakni Dengan demikian, turunan dari \ fx = x \sin 3x \, yakni Contoh 15 Jika \ \displaystyle fx = \frac{ \cos x - \sin x }{ \cos x + \sin x } \, dengan \ \cos x + \sin x \neq 0 \, maka \ f’x = \cdots \ Pembahasan » Misalkan \ u = \cos x - \sin x \ dan \ v = \cos x + \sin x \ sehingga \ fx = u/v \. Ingat bahwa rumus turunan dari pembagian dua fungsi, yaitu Kita cari turunan dari \u\ dan \v\ terlebih dahulu, yakni Dengan demikian, Contoh 16 Jika \ fx = x \cos x \, maka \ \displaystyle f’ \leftx + \frac{\pi}{2} \right = \cdots \ Pembahasan » Ingat bahwa Sekarang kita akan menyelesaikan turunan dari fungsi di atas menggunakan rumus turunan untuk perkalian dua fungsi. Misalkan \ u = - \left x + \frac{\pi}{2} \right\ dan \ v = \sin x \ sehingga Dengan demikian, Contoh 17 Jika \ fx = \sin x + \cos x\cos 2x + \sin 2x \ dan \ f’x = 2 \cos 3x + gx \, maka \ gx = \cdots \ Pembahasan » Untuk menyelesaikan soal ini kita mungkin memerlukan catatan rumus jumlah dan selisih dua sudut pada perbandingan trigonometri. Jadi, \ gx = \cos 3x - \sin x \. Jika Anda merasa artikel ini bermanfaat, bantu klik tombol suka di bawah ini dan jika ada yang kurang jelas dari artikel ini silahkan tanyakan di kolom komentar. Terima kasih. Our greatest weakness lies in giving up. The most certain way to succeed is always to try just one more time.

soal dan pembahasan turunan fungsi trigonometri